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Proofwriting Checklist

In the Guide to Proofs, we gave a number of examples of good and not-so-great proofs, along with
what aspects of them we liked or disliked. If you haven’t yet done so, take a few minutes to go and
read over it.

In this handout, we’ve distilled five major points about proofwriting that we will specifically be look-
ing for when grading your assignments. They are as follows:

☐ Clearly articulate your start and end points.

☐ Every sentence in your proofs should be load-bearing.

☐ All variables should be scoped and introduced properly.

☐ Make specific claims about specific variables.

☐ Write in complete sentences and complete paragraphs.

We strongly recommend that you work through this checklist on every proof that you write. Doing
so will help you improve your proofwriting and possibly smoke out some underlying logic errors.

The remainder of this handout goes into more detail about what each of these rules mean.
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Clearly Articulate Your Start and End Points
When you’re writing a proof, you’re laying out an argument that explains why a certain result is true.
Most proofs have a number of intermediate steps that build up toward a larger result. When writing
a proof, it’s important to make sure that the reader has a clear sense of where it is that you’re going
and how you’re going to arrive there. Otherwise, your proofs will be extremely hard to read, since
while the reader might follow each individual step, they might have no idea where you’re going with
things. Think about how you might write an argumentative essay – if you just list a series of facts
without giving some idea of where you’re ultimately going, your readers are going to have a heck of
a time trying to make sense of what you’re doing!

Let’s illustrate this with an example. Consider the following proof:

Proof: Consider an arbitrary x ∈ A. Since x ∈ A and A ⊆ B, we see that x ∈ B. And, since x ∈ B and
B ⊆ C, we see that x ∈ C. Therefore x ∈ C, as required. ■

Here’s a question for you – what exactly is this proof trying to accomplish? It’s hard to say, since we
don’t know that A, B, and C are, it seems like the statements A ⊆ B and B ⊆ C come out of nowhere,
and the conclusion doesn’t say exactly why any of this matters.

The above proof was written for the following theorem:

Theorem: If A ⊆ B and B ⊆ C, then A ⊆ C.

With knowledge of the theorem in mind, the proof makes more sense. We know that A ⊆ B and that
B ⊆ C by assumption, and we’re looking at elements of A and trying to get them as elements of C
because we’re trying to prove something about the subset relation. But that still shifts a lot of work
to the person reading the proof. A better proof would provide more milestones and guidance about
where everything comes from and where everything is going. Here’s what that might look like:

Proof: Let A, B, and C be arbitrary sets where A ⊆ B and B ⊆ C. We will prove that A ⊆ C. To do
so, choose an arbitrary x ∈ A. We will prove that x ∈ C.

Since x ∈ A and A ⊆ B, we see that x ∈ B. And, since x ∈ B and B ⊆ C, we see that x ∈ C. Therefore
x ∈ C, as required. ■

Compare this proof to the one before it. Even if you had no idea what the theorem was when going
into this proof, you could still see exactly what’s being done – what’s being assumed, what’s being
proved, how the logic flows, etc. There’s no more mystery about why A ⊆ B and B ⊆ C are true: we
can see that they’re true by assumption.

There’s a number of reasons why it’s worthwhile to set up your proofs this way. First, when you’re
still working through the problem and trying to figure out why exactly the result is true, this step
forces you to write out exactly what it is that you’re assuming and what you need to prove. That
makes it much easier to figure out what directions you should consider. It also forces you to articu-
late very precisely what it is that you need to establish. If you look at the overall theorem to prove
here, it might seem, well, kinda obvious. Like, “well, of course if A is a subset of B and B is a subset
of C, then A is a subset of C – that’s just what subset means!” But if you start unpacking the defini-
tions and articulating where specifically you’re going to start and end, it becomes much easier to see
what you need to do.
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Every Sentence in Your Proofs Should Be Load Bearing
When you’re writing a proof, you are trying to convey a mathematical argument, and each step in
what you write should advance your argument. As a general rule, every statement in a proof should
do one of the following things:

• Set up a goal. As mentioned in the preceding pages, your proof should start off with an in-
troduction that clearly articulates a start and end point. In larger proofs, you might find your-
self needing to prove an auxiliary result that you’ll use to build up to the larger result, and
when you do that, you’ll similarly want to set up what it is that you’re trying to prove.

• Introduce a new variable. Sometimes, in the course of a proof, you’ll need to introduce new
variables. If you’re proving something universally-quantified, you might want to say some-
thing like “let  x be an arbitrary bananafish,” and if you’re proving something existentially-
quantified you might want to say something like “since n is even, we know there is an integer
k such that n = 2k.”

• Combine preceding results into something new. Any sentence that doesn’t set up a new goal
or introduce a new variable should make progress toward the result by taking some number
of preceding statements and deriving some new,  mathematically rigorous result from those
preceding statements. For example, you might say something like “since n = 2k, we see that
n2 = 2(2k)2” or “since A ⊆ B and x ∈ A, we learn that x ∈ B.”

If you find yourself reading over a sentence that doesn’t accomplish any of these goals, it is likely
unnecessary and should be eliminated. This is a great way to reduce the size of your proofs and to
make sure that you’re being rigorous.

This is a particularly useful check to apply to a proof after you’ve first finished writing it, since often
times in the course of solving a problem and writing up a first proof draft you’ll go on unnecessary
tangents, or write out some high-level lines of reasoning that you then make more rigorous later on.
If you look over the Guide to Proofs and look at the proof that log₂ 3 is irrational, you’ll see an ex-
ample of an initial draft of a proof, some analysis as to why it feels a bit disorganized, and then
some suggestions for cleanup. Most of the cleanup there can be summarized by looking at the three
above classes of statements and eliminating anything that doesn’t fit.



4 / 10

All Variables Should Be Scoped and Introduced Properly
In programming languages like C, C++, and Java, you’re required to declare variables before you
use them. The type of the variable lets the reader (and the compiler!) know what sort of thing the
variable can hold and what it represents. If you try to use a variable you haven’t declared, or if you
try to treat a variable of one type as though it had a different type, you get a compiler error because
there’s something amiss with what you’ve done.

Variables in mathematical proofs obey a similar sort of convention. When writing proofs, it’s impor-
tant that you clearly and precisely articulate what each variable stands for and, additionally, where it
comes from. When you use a variable in a proof, you should explicitly articulate

• the name of the variable,

• what value it represents, and

• where it comes from.

Those last two points are critical in writing proofs. Every variable that you use should be of one of
the following types:

• An arbitrarily-chosen value. A variable like this doesn’t represent some specific number,
set, or quantity, but rather an arbitrarily-chosen value. Variables like these often arise in the
context of proving universally-quantified statements. For example, if you want to prove the
claim “for any natural number n, if n is even, then n2 is even,” you might introduce a variable
n like this:

Let n be an arbitrary even natural number.

Here, we’re indicating that the variable is named n, its value is some even natural number,
and that it’s chosen arbitrarily.

• An existentially instantiated value. Sometimes, you know that some quantity must exist, but
you don’t know what it is. For example, if you know that n is an even natural number, you
know that n must be twice some other natural number, and so you might give it a name, as
shown here:

 Since n is even, there is some integer k such that n = 2k.

It’s important to note that this number k is not chosen arbitrarily. That would imply that any
choice of k would work here, but that’s not true: there’s only one choice of k you can pick
where n = 2k. Rather, k is called an existentially instantiated variable, because we know that
there exists some value with some property and we’re introducing the variable k as a way of
saying what that value is.

• An explicitly chosen value. Sometimes, you’ll introduce a variable simply as a simpler way
of referring to some other quantity. For example, we might say something like this:

Let m = 2k2.

Or, we could say something like this:

Consider the set D = { x ∈ S | x ∉ f(x) }.

Here, we’re just giving a name to an existing quantity, which functions like a constant in a
language like C, C++, or Java.
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When you write up a proof (or, more generally, when you’re reading something mathematical), it’s
important to make sure that you can look at each variable and clearly tell whether that variable is ar -
bitrarily chosen, existentially instantiated, or explicitly chosen. Just like variables in C, C++, or Java,
this helps you clearly indicate what your variables mean, what they store, and where they’re coming
from.

One particular caveat to watch out for: some variables in mathematics are true placeholders that
don’t actually stand for anything. For example, in set-builder notation, we use placeholder variables
to denote the name of some unknown quantity:

{ n ∈ ℕ | n is even and n2 > 48 }

In this context, n does not represent a value. It’s just a placeholder so that we can write the expres-
sion “n is even and n2 > 48” in a way that’s clear and easy to follow. It’s an error to try to reference
the number n out of this context.

To see how these rules come into play, let’s look at one possible proof of this result:

For any sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

Here’s a not-so-great proof of this result:

Proof: Let A, B, and C be arbitrary sets where A ⊆ B and B ⊆ C. This means that for any choice of
x, if x ∈ A, then x ∈ B. Similarly, for any choice of x, if x ∈ B, then x ∈ C. We need to prove that
A ⊆ C, which means that we need to prove that for any choice of x, if x ∈ A, then x ∈ C.

To show this, consider any x ∈ A. Since x ∈ A and we know that any x ∈ A must also be an element
of B, we see that x ∈ B. Similarly, since x ∈ B and we know that any x ∈ B must also be an element
of C, we see that x ∈ C, which is what we needed to show. ■

Let’s focus on a few of the sentences here. For starters, let’s look at this sentence from the opening
paragraph:

This [A ⊆ B] means that for any choice of x, if x ∈ A, then x ∈ B.

What, exactly, is the variable x here? It’s not an arbitrarily-chosen x, since we didn’t say something
like “choose an arbitrary x.” Instead, it’s a placeholder: it says that if we find some x where x ∈ A,
then we can conclude that x ∈ B. All that we’ve done here is set up some possible confusion for later
on in the case where we do define some variable named x.

Think back to Rule Three. Every sentence in a proof should set up a goal, introduce a variable, or
combine results together into something new. This sentence doesn’t set up a goal. It doesn’t intro-
duce a new variable. In a sense it kinda combines results together into something new, but really, it’s
not doing that. It’s just restating the definition of what a subset is. As a result, this sentence probably
fails Rule Three and should be cut.

This sentence actually does cause problems later in the proof, specifically in these sentences:

To show this, consider any x ∈ A. Since x ∈ A and we know that any x ∈ A must also be an element
of B, we see that x ∈ B.
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In the first sentence, we introduce a new variable x, which is chosen as an arbitrary element of the
set A (which is fine by both Rule Three and Rule Four). You can imagine that the reader is going to
look at this and say “okay, I’m going to pick some specific thing x.” In the next sentence, though, the
proof talks about “any x ∈ A.” Now the reader is going to be confused: “hold on, are you talking
about the x that you just asked me to pick in the preceding sentence, or are you talking about some
other thing called x?”

Think of it this way: the following code wouldn’t be legal in C, C++, or Java:

int x = 137;
int x = 42;  // Error!

The issue here is that x is already defined on the first line, so the second line is a variable redefinition
error. If you want to talk about x going forward, just use its name, not its type:

int x = 137;
x = 42;      // Okay!

The same is true of proofs. Phrases like “any x,” “every x,” or “any choice of x” suggest that you’re 
introducing some new variable, rather than referring to an existing variable.

A better way to rewrite the above sentences would be to write something like this:

Before After

To show this, consider any x ∈ A. Since x ∈ A
and we know that any x ∈ A must also be an

element of B, we see that x ∈ B.

To show this, consider any x ∈ A. Since x ∈ A
and A ⊆ B, we see that x ∈ B.
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Make Specific Claims About Specific Variables
When you’re first learning to write proofs, it’s common to want to write proofs that make big claims
about how things work in general rather than pinning down the specifics. For example, consider this-
not-so-great proof that if A ⊆ B and B ⊆ C, then A ⊆ C.

Proof: Let A, B, and C be arbitrary sets where A ⊆ B and B ⊆ C. We will prove that A ⊆ C.

Since A ⊆ B, we see that every element of A is an element of B. Similarly, since B ⊆ C, we see that
every element of B is an element of C. Therefore, every element of A is an element of C, so by defi-
nition A ⊆ C, as required. ■

The intuition underlying this proof is good, but the way this is written is far too high-level. Specifi-
cally, remember that the definition of the statement A ⊆ C is the following:

For every x, if x ∈ A, then x ∈ C.

In order to prove this claim by calling back to the definition, you’d need to show that if you chose an
arbitrary element x ∈ A that you’d find x ∈ C. The proof given above does not do this. The idea be-
hind it – that anything in A is in B and anything in B is in C – is totally correct, but that’s not how
you’d phrase it in a proof. In proofwriting, if you want to make a claim that something is true in the
general case, do so by using arbitrary choices or a proof by contradiction. For example:

Rewrite this… … like this

Since A ⊆ B, every element of A
is an element of B.

Consider any element x ∈ A. Since A ⊆ B and
x ∈ A, we see that x ∈ B.

The function f maps different inputs
to different outputs.

Consider any arbitrary x and y where x ≠ y.
Then f(x) ≠ f(y).

When you’re reading over your proofs, take a minute to check whether you are making specific, pre-
cise claims about named variables or broad, general claims about all objects of a certain type. If you
find yourself doing the latter, rewrite it to use the former. This will both clarify your reasoning and
make it significantly harder to make mistakes. Plus, if you find that you  can’t pin down precisely
what you mean about something, it might indicate that there’s some concept you’re having trouble
with.
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Write In Complete Sentences and Complete Paragraphs
Although proofs exist to convey mathematical arguments, the expectation is that they should be writ-
ten in grammatically-correct English sentences and in paragraph form.

A good test we recommend applying to your proofs is what we call the mugga mugga test. Take
your  proof  and  try  reading  it  out  loud,  replacing  all  the mathematical  content  with  the phrase
“mugga mugga.” If what comes back is grammatically correct, then you’re on the right track! On the
other hand, if what you write is hard to read aloud, or just plain doesn’t sound right, it means that
you might need to go back and correct things.

As an example, here’s a not-so-great proof that if n is even, then n2 is even:

Proof: If n is even, n = 2k. n2 = 4k2 and can be written as 2(2k2). 2k2 ∈ ℤ, so n2 is even. ■

Let’s apply the mugga mugga test to this proof, one sentence at a time. Here’s the first sentence:

Original Mugga Mugga Version

If n is even, n = 2k. If n is even, mugga mugga.
The mugga-muggaified version of this sentence isn’t grammatically correct – it has no subject and no
verb. The reason for this is that the subject of the original sentence is n and the verb is “equals,” but
since we’ve written out the equality using the equals sign, it got mugga-muggified in the updated ver-
sion of the sentence.

More generally:

Tip: Avoid writing sentences where mathematical notation must be treated as a verb.

So what should we do instead? Let’s begin with what you shouldn’t do. Don’t rewrite the sentence
like this in order to pass the mugga mugga test:

If n is even, n equals 2k.

This technically passes the mugga mugga test, but it’s doing so by taking a clear mathematical state-
ment (n = 2k) and rendering the unambiguous,  precise mathematical  symbol = in English.  The
whole reason for having mathematical symbols in the first place is so that we can be precise with our
notation, and this is a step in the wrong direction.

Instead, consider rewriting the sentence in a way that introduces a new subject and a new verb.
There are many ways that we can do this. Here are a few options to choose from:

New Version Mugga Mugga Version

If n is even, then we can write n = 2k. If n is even, then we can write mugga mugga.

Since n is even, we see that there is some integer
k such that n = 2k.

Since n is even, we see that there is some integer
k such that mugga mugga.

Because n is even, it can be expressed as n = 2k
for some integer k.

Because n is even, it can be expressed as mugga
mugga for some integer k.
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Notice how in each sentence we’ve introduced an explicit subject and verb in a way that passes the
mugga mugga test.

Let’s look at this second sentence:

Original Mugga Mugga Version

n2 = 4k2 and can be written as 2(2k2). Mugga mugga and can be written as mugga
mugga.

Again, we’re failing the mugga mugga test because the subject and verb of the sentence are ex-
pressed in mathematical notation. We’d be better off rewriting this sentence in one of the following
ways:

Original Mugga Mugga Version

We can rewrite the expression n2 = 4k2 as n2 =
2(2k2).

We can rewrite the expression mugga mugga as
mugga mugga.

Rewriting 4k2 as 2(2k2), we see that n2 = 2(2k2). Rewriting mugga mugga as mugga mugga, we
see that mugga mugga.

A common theme in the mugga mugga test is that you should avoid using mathematical notation as
the verb in a sentence. Similarly, you should avoid using mathematical notation or shorthands to ab-
breviate parts of sentences. There are a number of mathematical shorthands that have been devel-
oped over the years, primarily for use on blackboards where writing out longhand can take a while.
For example, the word “therefore” is often abbreviated ∴, and the word “because” is often abbrevi-
ated ∵. These shorthands are just that – they’re shorthands – and should not be used in mathematical
proofs except if you’re trying to write something up quickly and on a board. For example, please,
please, please don’t write the following:

∵ n is even, n = 2k for some integer k, ∴ n2 = 4k2 = 2(2k2), ∴ n2 is even ∵ n2 = 2m for m = 2k2.

This one really, really, really fails the mugga mugga test:

Original Mugga Mugga Version

 ∵ n is even, n = 2k for some integer k, ∴ n2 =
4k2 = 2(2k2), ∴ n2 is even ∵ n2 = 2m for m = 2k2.

Mugga mugga n is even, mugga mugga for some
integer k, mugga mugga mugga mugga, mugga

mugga n2 is even mugga mugga mugga mugga for
mugga mugga.

This almost reads like a parody of a terrible math lecture. So please don’t write proofs like this. ☺

The mugga mugga test won’t catch all instances where you’re not writing in complete sentences, but
it’s a great starting point.
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Just as you’re expected to write in complete sentences, you’re expected to write in complete para-
graphs. This means that your proofs should not consist of bulleted or numbered lists of statements.
For example, please don’t write proofs like these:

• Let n be an even integer.

• Since n is even, we can write n = 2k for some integer k.

• Then n2 = 4k2.

• So n2 = 2(2k2).

• Let m = 2k2.

• Then n2 = 2m.

• Therefore n2 is even.

Although we can see what this proof is saying, this just isn’t the format that’s expected and so you
shouldn’t structure things this way.
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